
Malaysian Journal of Mathematical Sciences 7(S): 145-156 (2013)

Special Issue: The 3
rd

 International Conference on Cryptology & Computer Security 2012

(CRYPTOLOGY2012)

Big-Digits Representation and its Application in Cryptography

*
Shahram Jahani and Azman Samsudin

School of Computer Sciences,

 Universiti Sains Malaysia,

11800 Penang, Malaysia

E-mail: Jahani2001@yahoo.com and azman@cs.usm.my

*Corresponding author

ABSTRACT

The efficiency of number theory based cryptosystems correlatesdirectly to the
efficiency of large integer multiplication operation. In this paper, we propose a
hybrid of Karatsuba-Classical multiplication algorithm that is based on a Look-up
table of "Big-Digits" representation. The Big-Digits representation is a more
compact representation compared to the binary representation. Therefore, by using
the Big-Digits representation, the number of sub-multiplication operations in a

multiplication algorithm will reduce significantly. The results of this study show that
the proposed multiplication algorithm, which is based on the Big-Digits
representation, is faster than the classical, Karatsuba and the hybrid of Karatsuba-
Classical multiplication algorithms in range of the public-key cryptography
implementation.

Keywords: Public-key cryptography, Big-Integer calculation, and Karatsuba
multiplication algorithm.

1. INTRODUCTION

 Number theory based public-key algorithms use multiplication

extensively in their operations. Subsequently, many mathematicians and
computer scientists have devoted their time in devising efficient multiplying

algorithms for large numbers. The best known algorithmsfor multiplying

big numbers in order of complexity are: Schoolbook or classical
multiplication algorithm (Knuth (1997),Karatsubamultiplication algorithm

(Karatsuba and Ofman (1963)), Toom-Cook multiplication algorithm (Cook

May (1966), Shönang-Strassenmultiplication algorithm (Schonhage and
Strassen (1971), and Fürer (Fürer (2007)) multiplication algorithm.Related

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

Shahram Jahani & Azman Samsudin

146 Malaysian Journal of Mathematical Sciences

work on big integer multiplication algorithms can also be found in the
following literatures (Jedwab and Mitchell (1989), Montgomery (2005),

Bodrato (2007), Hars (2007)).

 Earlier researchers improved the multiplication algorithms

efficiency by introducing algorithms with efficient complexity. However,

there are other techniques that can be used to improve the multiplication
algorithm efficiency. Manipulating the numbers representation (Reitwiesner

(1960), Okeya et al. (2004)), representing integers in anew number system

(Dimitrov et al. (1997); Avanzi et al. (2006), Maitra and Sinha (2007)) or
using look-up table (Hasan (2000), Wen-Ching et al. (2008)) are some of

the known techniques that had been used in improving multiplication

algorithms.

 This paper will first explain the two most important multiplication
algorithms in cryptography; classical algorithm and Karatsuba algorithm.

This will followed by a brief discussion on binary number representation

before the introduction of the Big-Digits concept and the ZOT number

representation through definitions and properties. The following section
will show how ZOT improves the efficiency of the multiplication

algorithms.

Classical Multiplication Algorithm

The usual method of multiplying two numbers in positional numeral system

isknown as classical multiplication algorithm (Knuth 1997)which can be
stated as follows (see Algorithm 1):

Algorithm 1: Classical Multiplication CL (A,B)

Input: A � �a� … a�	

B � �b� … b��

Output: C � �C����� … , C�C�	

1. for (i � 0; i � q; i++)

2. if (i � 0) do

3. for (j � 0; j � p; j++)

4. TMP � C�� ! �a� " b �+ CRRY;

5. CRRY � %TMP/b';C�� � TMP mod b;

6. C�����+CRRY;
7. return C

Big-Digits Representation and Its Application in Cryptography

 Malaysian Journal of Mathematical Sciences 147

There are two nested loops as shown in Steps 1 and 3 of Algorithm 1 to
scan all q digits of the multiplier and p digits of the multiplicand. The

maximum length of output C will be / ! 0 ! 1and each digit of C will be

calculated as follow:

The value of 234 in Step 4,is computed by adding the value of 56�7with

the value of5889and the result of multiplying the non-zero digit of the

multiplier, :6, (Step 2) with digit;7 from the multiplicand. The values of

quotient and reminder areextracted from TMPafter divided by b, in Step 5

and are saved in <6�7 and CRRY respectively. In this way, all the output

digits from the least to the most significant digit are consecutively

computed. The complexity of this algorithm is=�>?	, which is slow for

applications such as cryptography.

Karatsuba Multiplication Algorithm

Karatsuba multiplication algorithm (Karatsuba and Ofman (1962)) with

complexity =�>�.AB	 is a suitable algorithm for multiplying numbers larger

than few hundred digits long (Xianjin and Longshu (2007)). This algorithm
performs based on two mechanisms; divide and conquer (Cormen et al.

(2000), Levitin (2002), Mainzer (2007)) and binary splitting (Brent (1976)).

Equations 1 and 2 describe the multiplication operations, which the

classical algorithm and Karatsubaalgorithm are based on, respectively. The
number of partial products in each iteration of the Karatsuba algorithm is

three while the classical algorithmhas four, which gives Karatsuba

algorithm the extra advantage in its calculation.

 :. ; � �:C . ;C	D?E ! �:F . ;C ! :C . ;F	DE ! �:F . ;F	 (1)

:. ; � �:C . ;C	D?E ! G�:F ! :C	. �;C ! ;F	 H �:C . ;C	 H �:F . ;F	IDE

! �:F . ;F	

(2)

Algorithm 2 shows the recursive Karatsuba multiplication algorithm in
detail. When the length of the numbers that are being multiplied is 1, the

multiplication proses is a simple digit by digit multiplication (see Step 2).

For numbers larger than 1 digit, the numbers are divided into a lower (:F)

and an upper half (:C) as shown by Equation 3 before the algorithm is being

call again recursively. The algorithm ends after JKL? >steps.

: � :C " DE/? ! :F , ; � ;C " DE/? ! ;F (3)

Shahram Jahani & Azman Samsudin

148 Malaysian Journal of Mathematical Sciences

Since Karatsuba multiplication algorithm run slower for numbers shorter
than few hundred digits, some researchers (Von (2002)) had proposed a

hybrid approach where Karasuba algorithm is combined with other

multiplication methods. Another approach to improve the performance of
Karasuba algorithm, is by splitting the numbers into more than 2 segments

per iteration. Dan Zuras described 3-way and 4-way variations of the

Karatsuba algorithm (Zuras (1994)), and these studies was later extended by

M. Sadiq and A. Jawed (Sadiq and Ahmed (2006)) by splitting the numbers
into 2-to-ten parts. Related work on Karatsuba algorithm can be found in

these literatures (Montgomery (2005), Haining and Hasan (2007), Bernstein

(2009)).

Algorithm 2: Karatsuba Multiplication C=KA (A,B)

Input: A � �aMN� … a�	O

B � �bMN� … b�	O

Output: KA (A,B)

1. Ifn � 1

2. returnQ " R

3. else

4. :C � S T
OU/V W :>X :F � a mod rM/?// dividing a into two halves

;C � S

OU/V W :>X ;F � b mod rM/?// dividing b into two halves

5. Z� � [Q�:C , ;C	

6. Z� � [Q�:F , ;F	

7. Z? � [Q�:F ! :C , ;F ! :C	

8. return Z� " DE ! �Z? H Z� H Z�	 " DE/? ! Z�

2. BIG-DIGITS REPRESENTATION

 ZOT representation (Jahani (2009)) is a new representation for

integers, which was derived from the binary numbering system. Symbols

used in this representation are known as Big-Digits or in short “BD”. The
different patterns of “0” and “1” symbols are the foundation of ZOT. These

patterns are described as follows:

• Big-Zero: A sequence of symbol “0” is identified as Big-Zero or BZ.

We represent a BZwith length of nas \E.For example, \] � "000" � 0

and \� � "0" � 0.

• Big-One: A sequence of symbol “1” is identified as Big-One or BO. We

represent a BO with length of n as=E.The numerical value of each Big-

Big-Digits Representation and Its Application in Cryptography

 Malaysian Journal of Mathematical Sciences 149

One could be obtainedby =E � ∑ 26EN�
� .For example, =� �

∑ 26�N�
� =1 and =a � ∑ 26aN�

� � 1111111? � 127.

• Big-Two: A sequence of symbols “10” with extra symbol “1” at the

right side of the sequence is called Big-Two or BT. We represent a BT

with length of n as 2E.It is clear from the definition that the length of

BT is always odd and its numerical value can be obtained from 2E �
∑ 46�EN�	/?

� .For example, 2A � ∑ 46�AN�	/?
� � 10101? � 21.

 Big-Digits is not a unique representation. For example, the binary

number of "11111" could be represented by =A , =d =� , =� =dor =] =?.
ZOT representationlimits these varieties to only one representation. To

convert a binary number to the ZOT representation the following rules must

be considered.

• Direction of scanning:The direction of scanning a binary number to

search for a new BD does not matter;however right-to-left is preferred.

• Valid Big-Digit:A valid Big-Digit in ZOT representation is a Big-

Digit, which cannot be extendedwith any symbols, either tothe left or to

the right of the BD. There is one exception; when a Big-One and a Big-
Two are next to each other. In this situation the common “1” must

belongs to BO.For example, the valid representation for “1111010101”

is =d \� 2A, not =] 2a. More detail on ZOT representation can be found
in (Jahani 2009).

 For coding purposes ZOTis represented as shown by the following
example:

11111efg
 hi

000 1010101ejjfjjg
 kl

000 11111efg
 hi

� =�A,�B	 2�a,B	 =�A,�	

 In above example, we can see all BZs disappeared and every non-

zero BDs in the representation carry extra one more parameter. The
parameters are the length and position of BD in its original binary form. In

above example, 2�a,B	 means there is a BT with length 7 at position 8. This

representation will prevent from double scanning of zeros while doing

multiplication in ZOT representation.

 Implementing Look-Up Table (LUT) in multiplication algorithm

has its advantages (Hasan (2000), Mahboob and Ikram (2005), Wen-Ching

et al. (2008)).To benefit from this technique the ZOT representation is

modified to form another variant of ZOT known as \=2m , where x is the

Shahram Jahani & Azman Samsudin

150 Malaysian Journal of Mathematical Sciences

upper limit forthe maximum size of non-zero BDs in the representation. In

this case, the size of the multiplication LUT will be limited to n?.The

procedure for obtaining \=2m representation is similar tothe process of

obtaining the ZOT representation, except that the maximum length of BDs

must belimited to xbits.The following exampleclarifies this concept.

Q � 1111111000010101000111111oppppppppppqppppppppppr
s6Etuv

� =�a,�B	 2�A,w	 =�x,�	opppppqpppppr
yhk

 � =�?,?]	=�A,�B	 2�A,w	 =��,A	=�A,�	opppppppppqpppppppppr
yhki

3. KARATSUBA MULTIPLICATION ALGORITHM WITH z{|}

REPRESENTATION

 The \=2m has less non-zero digitsin its representation compared to

its original binary representation. Hence, to multiply two \=2m numbers,

less sub-multiplication operations is required. Classical multiplication

algorithm, with some modification, can support the \=2m representation; as
demonstrated by Algorithm 3.

Algorithm 3: Classical_ZOT� Multiplication Algorithm

Input: A � �a�, … , a�, a��?

B � �b�, … , b�, b��?

Output: C =5� H \=2m�Q, R	 � �c����� … , c?, c�, c��?

1. ZOT��A	 � a� � a�
� , … , a�

� , a�
� ;// where aM

� � �aM�
� , aM�

� , aM�
� 	

2. ZOT��B	 � b� � b�
� , … , b�

� , b�
� ;// where bM

� � �bM�
� , bM�

� , bM�
� 	

3. for (i � 0; i � p;i++)

4. for (j � 0; j � q;j++)

5. <�
t��

� �s��
� � <�

t��
� �s��

� ! R�L��L��3�J��0J�<:��K>�a�
�, b

��;

6. 5 � Convert to binary �C�	;

7. return C

The first modification is the conversion step, converting binary

numbers a and b to \=2m representation :� and ;� (see Steps 1 and 2). In

these steps, all BDs such as :E� ,will be denoted by three additional

parameters; type denoted by:E�� , length denoted by :E�
� , and position of BD

denoted by:E�� .These conversions are actually the first overhead of the

algorithm. The second modification is in Step 5. In this step, the function

R�L��L��3�J��0J�<:��K>�a�
�, b

�� fetches the result of binary multiplication

Big-Digits Representation and Its Application in Cryptography

 Malaysian Journal of Mathematical Sciences 151

of two Big-Digits :6
�and;7

� from a pre-calculated LUT. This value will be

added to digit <t��
� �s��

� , where :6�
� ! ;7�

� addresses the position of the digit.

Note that, there is no “carry” from the previous calculation being calculated

in Step 5. Therefore, the pre-defined memory for each digit of the output
must be big enough to support the summation value in Step 5. The third

modification is related to the format of the output. Based on to the memory

specified for each digit, the base of the output can be defined. For example

if we consider n bytes for each digits. The base of the output is 2
n
. In Step 6,

the output is converted to binary.

 Algorithm 4 shows the hybridof the Karatsubaalgorithm with the

Classical-\=2mmultiplication algorithm. The only difference between

Algorithms 2 and 4 is in Step 1.In this step, when the size of the numbers

reach the cut-off point value, theClassical-\=2m multiplication algorithm

will be used for the calculation.

Algorithm 4: Hybrid of Karatsubaand Classical-\=2m Multiplication Algorithm

Input: A � �aMN� … a�	O

B � �bMN� … b�	O

Output: [Q H \=2m�Q, R)

1. Ifn � cut_off point
2. return�Q " R	��t��6�t�_yhkm

3. else

4. :C � S T
OU/V W :>X :F � a mod rM/? // dividing a into two halves

;C � S

OU/V W :>X ;F � b mod rM/?// dividing b into two halves

5. k� � KA�aL, bL	

6. Z� � [Q�:F , ;F	

7. Z? � [Q�:F ! :C , ;F ! :F	

8. return Z� " DE ! �Z? H Z� H Z�	 " DE/? ! Z�

 In the following section,we compare the efficiency of the proposed

multiplication algorithm with the existingclassical (CL), Karatsuba (KA)
and hybrid of Karatsuba-Classical (KA-CL)multiplication algorithms in

range of the public-key cryptography algorithms.

4. RESULTS

 According to (Jahani (2009)), the Hamming weight for 32 bits to 32
Kbits random numbers (Matsumoto and Nishimura (1998)) is about 20%

while the Hamming weight for binary number is 50%. Therefore,

theoretically the number of partial multiplication for classical and Classical-

Shahram Jahani & Azman Samsudin

152 Malaysian Journal of Mathematical Sciences

\=2m multiplication algorithm will be about0.25>?and0.04>?,respectively.

Subsequently, the classical-\=2m multiplication algorithm should be about

6.25 times faster than the classicalmultiplication algorithm. Because of the

overhead in converting the binary numbers to the \=2m representation

andthe call to the functionR�L��L��3�J��0J�<:��K>,the actual speed-up
ratio is less than what is being speculated above. This paper investigates the

effectiveness of combining the Karatsuba algorithm with the Classical-

\=2m multiplication algorithm.

 Random numbers that are being represented by Big-Digits have
special distribution, which will help in determining the optimized size for

the lookup table. Table1 shows that with higher value of x (the maximum

length of Big-digits), more numbers can be converted to \=2m . Result in

Table 1,which are based on the 50 different 8 Kbits random numbers,
indicatesthat 99% of random number has less than 8 non-zero symbols.In

general, depending on the application and available memory, we can

increase or decrease the value of x. However, the proposed range
(x=7)should covers 99% of the numbers. The other 1% of the numbers can

be segmented into a few Big-Digits with length less than 7 bits.

TABLE 1: Distribution percentage of Big-Digits in a random numbers (8 Kbits)

x 1 2 3 4 5 6 7

Percentage 37% 67% 84% 92% 96% 98% 99%

 Table 2 shows the measured execution time for each algorithm (CL,

KA, KA-CL and KA-\=2m) within the range of 32 bits to 8 Kbits. The

number of random numbers used for each test is 50 and the cut-off points

were determined by experimenting with the KA-CL algorithm. The

proposed algorithm was tested under the same conditions as other
algorithms with the same cut-off points. The machine specification used in

the experiment is as follows: AMD Phenom (TM) 9950 Quad-core CPU 2.6

GHz, 3.25GB RAM, Windows XP Professional version 2002 (Service Pack
3) OS and Dev-C++ version 4.9.9.2 compiler.

 Table 2 shows that the hybrids algorithms have different cut-off

points depending on the length of the number. The cut-off point value

increases continuously against the length of numbers within the range of 32

to 128 bits. For numbers in the range of 1 Kbits up to 8 Kbits, the cut-off
point stable at 16 bits.

Big-Digits Representation and Its Application in Cryptography

 Malaysian Journal of Mathematical Sciences 153

TABLE 2: Execution time (msec) of multiplication algorithms

Algorithm
Length of numbers (bits)

32 64 128 256 512 1024 2048 4096 8192

CL 0.007 0.023 0.083 0.344 1.27 4.9 19.2 76.9 308.5

KA 0.021 0.064 0.193 0.592 1.77 5.4 15.9 48.3 142.9

KA-CL 0.008 0.024 0.078 0.267 0.82 2.5 7.6 23.3 71.4

ProposedAlgorithm

(x=7)
0.005 0.010 0.020 0.094 0.28 1.4 4.1 13 33.3

Cut-offPoint 16 32 64 32 32 16 16 16 16

 The results show that the performance of KA-\=2mmultiplication

algorithm is better than CL, KA and KA-CL. The speed of KA-\=2a is

about1.4 times faster than CL and increases to 9.2 times faster for 8 Kbits

numbers. Comparing the execution speed between KA-\=2mand KA, tells

us that KA-\=2mis about 4.2 times faster for 32 bits number and increases
to about 4.3 times faster for 8 Kbits numbers, with some fluctuation in

between. Figure 1 also indicates that KA-ZOTx is relatively faster than KA-

CL. KA-ZOTx is about 1.6 times faster to 2.9 times faster for multiplying
numbers in the range of 32 bits to 8Kbits.

Figure 1: Comparison of KA-ZOTx multiplication algorithm against CL,KA and

KA-CL multiplication algorithms

5. CONCLUSION

 In this paper, we proposed a new hybrid multiplication algorithm,
combining the Karatsuba multiplication algorithmwith the ZOTx

multiplication algorithm. The proposed Karatsuba-ZOTx (with x = 7) out-

performs all other tested algorithms. The result indicated that Karatsuba-

ZOTx algorithm is about 1.6 (for 32 bits numbers) to 2.9 times faster (for
8192 bits numbers) against the best existing Karatsuba-Classical algorithm.

0

5

10

15

32 64 128 256 512 1024 2048 4096 8192
Length of multiplier-multiplicant (bits)

KA-ZOTx/CL KA-ZOTx/KA KA-ZOTx/KA-CL

Shahram Jahani & Azman Samsudin

154 Malaysian Journal of Mathematical Sciences

The finding from this paper indicates that the proposed algorithm is
currently the most suitable multiplication algorithm for the use in existing

public-key cryptosystems.

ACKNOWLEDGEMENT

 The researchers would like to thank the Universiti Sains Malaysia

for supporting this research (Project grant: 1001/USM/817059).

REFERENCES

Avanzi, R. M. and Dimitrov, V. 2006. Extending Scalar Multiplication to

Double Bases. In: Lai, X., Chen, K. (eds.). ASIACRYPT 2006.

LNCSS. 4284: 130-144.

Bernstein, D. J. 2009. Batch Binary Edwards. Advances in Cryptology -

Crypto 2009. S. Halevi. Berlin, Springer-Verlag Berlin. 5677: 317-

336.

Bodrato, M. 2007. Towards Optimal Toom-Cook Multiplication for

Univariate and Multivariate Polynomials in Characteristic 2 and 0.

Proceedings of the 1st international workshop on Arithmetic of
Finite Fields. Madrid, Spain, Springer-Verlag.

Cook, S. A. 1966. On the Minimum Computation Time of Functions.
Mathematics, Harvard University. Ph.D. Thesis, Department of

Mathematics.

Dimitrov, V. S. et al. 1997. Theory and applications for a double-base

number system. Computer Arithmetic, 1997. Proceedings of 13th

IEEE Symposium.

Fürer, M. 2007. Faster integer multiplication. Proceedings of the thirty-

ninth annual ACM symposium on Theory of computing. San

Diego, California, USA, ACM.

Haining, F. and Hasan, A. 2007. Comments on Five, Six, and Seven-Term

Karatsuba-Like Formulae'. Computers, IEEE Transactions. 56(5):
716-717.

Big-Digits Representation and Its Application in Cryptography

 Malaysian Journal of Mathematical Sciences 155

Hars, L. 2007. Applications of fast truncated multiplication in
cryptography. EURASIP J. Embedded Syst. 2007(1): 3-13.

Hasan, M. A. 2000. Look-up table-based large finite field multiplication in
memory constrained cryptosystems. Computers, IEEE

Transactions. 49(7): 749-758.

J. Von, J. S. 2002. Fast Arithmetic for Polynomials Over F2 in Hardware.
In Proc. IEEE Information Theory Workshop.

Jahani, S. 2009. ZOT-MK: A New Algorithm for Big Integer Multiplication.
Department of Computer Science. Penang, Universiti Sains

Malaysia. Msc. Thesis.

Jedwab, J. and Mitchell, C. J. 1989. Minimum weight modified signed-
digit representations and fast exponentiation. Electronics Letters.

25(17): 1171-1172.

Karatsuba, A. and Ofman, Y. 1962. Multiplication of Many-Digital

Numbers by Automatic Computers. Proceedings of the USSR

Academy of Sciences.

Karatsuba, A. and Ofman, Y. 1963. Multiplication of Multidigit Numbers

on Automata. Soviet Physics Doklady (English translation). 7(7):

595-596.

Knuth, E. 1997. The Art of Computer Programming. Addison-Wesley.

Mahboob, A. and Ikram, N. 2005. Lookup table based multiplication

technique for GF(2(m)) with cryptographic significance. IEE

Proceedings-Communications. 152(6): 965-974.

Maitra, S. and Sinha, A. 2007. A single digit triple base number system - a

new concept for implementing high performance multiplier unit for

DSP applications. Information, Communications & Signal

Processing, 2007 6th International Conference.

Montgomery, P. L. 2005. Five, six, and seven-term Karatsuba-like
formulae. Computers, IEEE Transactions. 54(3): 362-369.

Shahram Jahani & Azman Samsudin

156 Malaysian Journal of Mathematical Sciences

Okeya, K. et al. 2004. Signed binary representations revisited. Proceedings
of .Advances in Cryptology - Crypto 2004. M. Franklin. Berlin,

Springer-Verlag Berlin. 3152: 123-139.

Reitwiesner, G. W. 1960. Binary arithmetic. Advances in Computers.

1:231-308.

Sadiq, M. and J. Ahmed 2006. Complexity Analysis of Multiplication of
Long Integers. Asian Jurnal of Information Technology. 5(2): 6-11.

Schonhage, A. and V. Strassen 1971. Schnelle Multiplikation grober
Zahlen. Computing in Science & Engineering. 7:139-144.

Wen-Ching, L. et al. 2008. A new look-up table-based multiplier/squarer

design for cryptosystems over GF(2^m). Circuits and

Systems, 2008. ISCAS 2008. IEEE International Symposium .

Xianjin, F. and Longshu, L. 2007. On Karatsuba Multiplication Algorithm.
Data, Privacy, and E-Commerce, 2007. ISDPE 2007. The First

International Symposium .

Zuras, D. 1994. More on Squaring and Multiplying Large Integers. IEEE

Transactions on Computers. 43(8): 899-908.

