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ABSTRACT 

The efficiency of number theory based cryptosystems correlatesdirectly to the 
efficiency of large integer multiplication operation. In this paper, we propose a 
hybrid of Karatsuba-Classical multiplication algorithm that is based on a Look-up 
table of "Big-Digits" representation. The Big-Digits representation is a more 
compact representation compared to the binary representation. Therefore, by using 
the Big-Digits representation, the number of sub-multiplication operations in a 

multiplication algorithm will reduce significantly. The results of this study show that 
the proposed multiplication algorithm, which is based on the Big-Digits 
representation, is faster than the classical, Karatsuba and the hybrid of Karatsuba-
Classical multiplication algorithms in range of the public-key cryptography 
implementation. 
 
Keywords: Public-key cryptography, Big-Integer calculation, and Karatsuba 
multiplication algorithm. 

 

1. INTRODUCTION 

 Number theory based public-key algorithms use multiplication 

extensively in their operations. Subsequently, many mathematicians and 
computer scientists have devoted their time in devising efficient multiplying 

algorithms for large numbers. The best known algorithmsfor multiplying 

big numbers in order of complexity are: Schoolbook or classical 
multiplication algorithm (Knuth (1997),Karatsubamultiplication algorithm 

(Karatsuba and Ofman (1963)), Toom-Cook multiplication algorithm (Cook 

May (1966), Shönang-Strassenmultiplication algorithm (Schonhage and 
Strassen (1971), and Fürer (Fürer (2007)) multiplication algorithm.Related 

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES 
 

Journal homepage: http://einspem.upm.edu.my/journal 



Shahram Jahani & Azman Samsudin 

 

146 Malaysian Journal of Mathematical Sciences 
 

work on big integer multiplication algorithms can also be found in the 
following literatures (Jedwab and Mitchell (1989), Montgomery (2005), 

Bodrato (2007), Hars (2007)). 
 

 Earlier researchers improved the multiplication algorithms 

efficiency by introducing algorithms with efficient complexity. However, 

there are other techniques that can be used to improve the multiplication 
algorithm efficiency. Manipulating the numbers representation (Reitwiesner 

(1960), Okeya et al. (2004)),  representing integers in anew number system 

(Dimitrov et al. (1997); Avanzi et al. (2006), Maitra and Sinha (2007)) or 
using look-up table (Hasan (2000), Wen-Ching et al. (2008)) are some of 

the known techniques that had been used in improving multiplication 

algorithms.  
 

 This paper will first explain the two most important multiplication 
algorithms in cryptography; classical algorithm and Karatsuba algorithm. 

This will followed by a brief discussion on binary number  representation 

before  the introduction of the Big-Digits concept and the ZOT number 

representation through definitions and properties. The following section 
will show how ZOT improves the efficiency of the multiplication 

algorithms.  
 

Classical Multiplication Algorithm 
 

The usual method of multiplying two numbers in positional numeral system 

isknown as classical  multiplication algorithm (Knuth 1997)which can be 
stated as follows (see Algorithm 1): 

 
Algorithm 1: Classical Multiplication  CL (A,B) 

Input: A � �a� … a�	
 

B � �b� … b��
 

Output: C � �C����� … , C�C�	
 

1. for (i � 0; i � q; i++ )                                  

2. if (i � 0) do 

3. for ( j � 0; j � p; j++ )                         

4. TMP � C�� ! �a� " b  �+ CRRY; 

5. CRRY � %TMP/b';C�� � TMP mod  b; 

6. C�����+CRRY; 
7. return  C 
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There are two nested loops as shown in Steps 1 and 3 of Algorithm 1 to 
scan all q digits of the multiplier and p digits of the multiplicand. The 

maximum length of output C will be / ! 0 ! 1and each digit of C will be 

calculated as follow: 
 

The value of 234 in Step 4,is computed by adding the value of 56�7with 

the value of5889and the result of multiplying the non-zero digit of the 

multiplier, :6, (Step 2) with digit;7 from the multiplicand. The values of 

quotient and reminder areextracted from TMPafter divided by b, in Step 5 

and are saved in  <6�7  and CRRY respectively. In this way, all the output 

digits from the least to the most significant digit are consecutively 

computed. The complexity of this algorithm is=�>?	, which is slow for 

applications such as cryptography.  

 

Karatsuba Multiplication Algorithm 
 

Karatsuba multiplication algorithm (Karatsuba and Ofman (1962)) with 

complexity =�>�.AB	 is a suitable algorithm for multiplying numbers larger 

than few hundred digits long (Xianjin and Longshu (2007)). This algorithm 
performs based on two mechanisms; divide and conquer (Cormen et al. 

(2000), Levitin (2002), Mainzer (2007)) and binary splitting (Brent (1976)). 
 

Equations 1 and 2 describe the multiplication operations, which the 

classical algorithm and Karatsubaalgorithm are based on, respectively. The 
number of partial products in each iteration of the Karatsuba algorithm is 

three while the classical algorithmhas four, which gives Karatsuba 

algorithm the extra advantage in its calculation.  
 

 :. ; � �:C . ;C	D?E ! �:F . ;C ! :C . ;F	DE ! �:F . ;F	                   (1) 

 

:. ; � �:C . ;C	D?E ! G�:F ! :C	. �;C ! ;F	 H �:C . ;C	 H �:F . ;F	IDE 

! �:F . ;F	                 

(2) 

Algorithm 2 shows the recursive Karatsuba multiplication algorithm in 
detail. When the length of the numbers that are being multiplied is 1, the 

multiplication proses is a simple digit by digit multiplication (see Step 2). 

For numbers larger than 1 digit, the numbers are divided into a lower (:F) 

and an upper half (:C) as shown by Equation 3 before the algorithm is being 

call again recursively. The algorithm ends after JKL? >steps.  

 

: � :C " DE/? ! :F , ; � ;C " DE/? ! ;F                           (3) 
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Since Karatsuba multiplication algorithm run slower for numbers shorter 
than few hundred digits, some researchers (Von (2002)) had proposed a 

hybrid approach where Karasuba algorithm is combined with other 

multiplication methods. Another approach to improve the performance of 
Karasuba algorithm, is by splitting the numbers into more than 2 segments 

per iteration. Dan Zuras described 3-way and 4-way variations of the 

Karatsuba algorithm (Zuras (1994)), and these studies was later extended by 

M. Sadiq and A. Jawed (Sadiq and Ahmed (2006)) by splitting the numbers 
into 2-to-ten parts. Related work on Karatsuba algorithm can be found in 

these literatures (Montgomery (2005), Haining and Hasan (2007), Bernstein 

(2009)).  
 

Algorithm 2: Karatsuba Multiplication C=KA (A,B) 

Input: A � �aMN� … a�	O 

B � �bMN� … b�	O 

Output: KA (A,B) 

1. Ifn � 1 

2. returnQ " R 

3. else 

4. :C � S T
OU/V W      :>X    :F � a mod rM/?// dividing a into two halves 

;C � S 

OU/V W      :>X    ;F � b mod rM/?// dividing b into two halves 

5. Z� � [Q�:C , ;C	 

6. Z� � [Q�:F , ;F	 

7. Z? � [Q�:F ! :C  ,  ;F ! :C	 

8. return Z� " DE ! �Z? H Z� H Z�	 " DE/? ! Z� 

 

2. BIG-DIGITS REPRESENTATION  

 ZOT representation (Jahani (2009)) is a new representation for 

integers, which was derived from the binary numbering system. Symbols 

used in this representation are known as Big-Digits or in short “BD”. The 
different patterns of “0” and “1” symbols are the foundation of ZOT. These 

patterns are described as follows: 
 

• Big-Zero: A sequence of symbol “0” is identified as Big-Zero or BZ. 

We represent a BZwith length of nas \E.For example, \] � "000" � 0 

and  \� � "0" � 0. 
 

• Big-One: A sequence of symbol “1” is identified as Big-One or BO. We 

represent a BO with length of n as=E.The numerical value of each Big-
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One could be obtainedby =E � ∑ 26EN�
� .For example, =� �

∑ 26�N�
� =1 and =a � ∑ 26aN�

� � 1111111? � 127. 
 

• Big-Two: A sequence of symbols “10” with extra symbol “1” at the 

right side of the sequence is called Big-Two or BT. We represent a BT 

with length of  n  as 2E.It is clear from the definition that the length of 

BT is always odd and its numerical value can be obtained from 2E �
∑ 46�EN�	/?

� .For example,  2A � ∑ 46�AN�	/?
� � 10101? � 21. 

 

 Big-Digits is not a unique representation. For example, the binary 

number of "11111" could be represented by  =A ,  =d =� ,  =� =dor =] =?. 
ZOT representationlimits these varieties to only one representation. To 

convert a binary number to the ZOT representation the following rules must 

be considered.  
 

• Direction of scanning:The direction of scanning a binary number to 

search for a new BD does not matter;however right-to-left is preferred. 
 

• Valid Big-Digit:A valid Big-Digit in ZOT representation is a Big-

Digit, which cannot be extendedwith any symbols, either tothe left or to 

the right of the BD. There is one exception; when a Big-One and a Big-
Two are next to each other. In this situation the common “1” must 

belongs to BO.For example, the valid representation for “1111010101” 

is =d \� 2A, not =] 2a. More detail on ZOT representation can be found 
in (Jahani 2009). 

 

 For coding purposes ZOTis represented as shown by the following 
example:  
 

11111efg
 hi

000 1010101ejjfjjg
 kl

000 11111efg
 hi

�  =�A,�B	 2�a,B	 =�A,�	 

 

 In above example, we can see all BZs disappeared and every non-

zero BDs in the representation carry extra one more parameter. The 
parameters are the length and position of BD in its original binary form. In 

above example, 2�a,B	 means there is a BT with length 7 at position 8. This 

representation will prevent from double scanning of zeros while doing 

multiplication in ZOT representation. 
 

 Implementing Look-Up Table (LUT) in multiplication algorithm 

has its advantages (Hasan (2000), Mahboob and Ikram (2005), Wen-Ching 

et al. (2008)).To benefit from this technique the ZOT representation is 

modified to form another variant of ZOT known as \=2m , where x is the 
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upper limit forthe maximum size of non-zero BDs in the representation. In 

this case, the size of the multiplication LUT will be limited to n?.The 

procedure for obtaining \=2m  representation is similar tothe process of 

obtaining the ZOT representation, except that the maximum length of BDs 

must belimited to xbits.The following exampleclarifies this concept.  
 

Q � 1111111000010101000111111oppppppppppqppppppppppr
s6Etuv

�   =�a,�B	 2�A,w	 =�x,�	opppppqpppppr
yhk

 

    �   =�?,?]	=�A,�B	 2�A,w	 =��,A	=�A,�	opppppppppqpppppppppr
yhki

 
 

 

3. KARATSUBA MULTIPLICATION ALGORITHM WITH z{|} 

REPRESENTATION 

 The \=2m  has less non-zero digitsin its representation compared to 

its original binary representation. Hence, to multiply two \=2m  numbers, 

less sub-multiplication operations is required. Classical multiplication 

algorithm, with some modification, can support the \=2m  representation; as 
demonstrated by Algorithm 3. 

 
Algorithm 3: Classical_ZOT� Multiplication Algorithm 

Input: A � �a�, … , a�, a��? 

B � �b�, … , b�, b��? 

Output: C  =5� H \=2m�Q, R	 � �c����� … , c?, c�, c��? 

1. ZOT��A	 � a� � a�
� , … , a�

� , a�
�  ;// where aM

� � �aM�
� , aM�

� , aM�
� 	 

2. ZOT��B	 � b� � b�
� , … , b�

� , b�
�  ;// where bM

� � �bM�
� , bM�

� , bM�
� 	 

3. for ( i � 0; i � p;i++) 

4. for ( j � 0; j � q;j++) 

5. <�
t��

� �s��
� � <�

t��
� �s��

� ! R�L��L��3�J��0J�<:��K>�a�
�, b 

��; 

6. 5 �  Convert to binary �C�	; 

7. return   C 

 

The first modification is the conversion step, converting binary 

numbers a and b to \=2m  representation  :� and ;� (see Steps 1 and 2). In 

these steps, all BDs such as :E� ,will be denoted by three additional 

parameters; type denoted by:E�� , length denoted by :E�
� , and position of BD 

denoted by:E�� .These conversions are actually the first overhead of the 

algorithm. The second modification is in Step 5. In this step, the function 

R�L��L��3�J��0J�<:��K>�a�
�, b 

�� fetches the result of binary multiplication 
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of two Big-Digits :6
�and;7

� from a pre-calculated LUT. This value will be 

added to digit <t��
� �s��

� , where :6�
� ! ;7�

�  addresses the position of the digit. 

Note that, there is no “carry” from the previous calculation being calculated 

in Step 5. Therefore, the pre-defined memory for each digit of the output 
must be big enough to support the summation value in Step 5. The third 

modification is related to the format of the output. Based on to the memory 

specified for each digit, the base of the output can be defined. For example 

if we consider n bytes for each digits. The base of the output is 2
n
. In Step 6, 

the output is converted to binary. 
 

 Algorithm 4 shows the hybridof the Karatsubaalgorithm with the 

Classical-\=2mmultiplication algorithm. The only difference between 

Algorithms 2 and 4 is in Step 1.In this step, when the size of the numbers 

reach the cut-off point value, theClassical-\=2m  multiplication algorithm 

will be used for the calculation. 

 
Algorithm 4: Hybrid of Karatsubaand Classical-\=2m Multiplication Algorithm 

Input: A � �aMN� … a�	O 

B � �bMN� … b�	O 

Output: [Q H \=2m�Q, R) 

1. Ifn � cut_off point 
2. return�Q " R	��t��6�t�_yhkm 

3. else 

4. :C � S T
OU/V W      :>X    :F � a mod rM/?  // dividing a into two halves 

;C � S 

OU/V W      :>X    ;F � b mod rM/?// dividing b into two halves 

5. k� � KA�aL, bL	 

6. Z� � [Q�:F , ;F	 

7. Z? � [Q�:F ! :C  ,  ;F ! :F	 

8. return Z� " DE ! �Z? H Z� H Z�	 " DE/? ! Z� 

 

 In the following section,we compare the efficiency of the proposed 

multiplication algorithm with the existingclassical (CL), Karatsuba (KA) 
and hybrid of Karatsuba-Classical (KA-CL)multiplication algorithms in 

range of the public-key cryptography algorithms.  
 

4. RESULTS 

 According to (Jahani (2009)), the Hamming weight for 32 bits to 32 
Kbits random numbers (Matsumoto and Nishimura (1998)) is about 20% 

while the Hamming weight for binary number is 50%. Therefore, 

theoretically the number of partial multiplication for classical and Classical-
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\=2m  multiplication algorithm will be about0.25>?and0.04>?,respectively. 

Subsequently, the classical-\=2m  multiplication algorithm should be about 

6.25 times faster than the classicalmultiplication algorithm. Because of the 

overhead in converting the binary numbers to the \=2m  representation 

andthe call to the functionR�L��L��3�J��0J�<:��K>,the actual speed-up 
ratio is less than what is being speculated above. This paper investigates the 

effectiveness of combining the Karatsuba algorithm with the Classical-

\=2m  multiplication algorithm.  
 

 Random numbers that are being represented by Big-Digits have 
special distribution, which will help in determining the optimized size for 

the lookup table. Table1 shows that with higher value of x (the maximum 

length of Big-digits), more numbers can be converted to \=2m . Result in 

Table 1,which are based on the 50 different 8 Kbits random numbers, 
indicatesthat 99% of random number has less than 8 non-zero symbols.In 

general, depending on the application and available memory, we can 

increase or decrease the value of x.  However, the proposed range 
(x=7)should covers 99% of the numbers. The other 1% of the numbers can 

be segmented into a few Big-Digits with length less than 7 bits. 

 
TABLE 1: Distribution percentage of Big-Digits in a random numbers (8 Kbits) 

 

x 1 2 3 4 5 6 7 

Percentage 37% 67% 84% 92% 96% 98% 99% 

 

 Table 2 shows the measured execution time for each algorithm (CL, 

KA, KA-CL and KA-\=2m) within the range of 32 bits to 8 Kbits. The 

number of random numbers used for each test is 50 and the cut-off points 

were determined by experimenting with the KA-CL algorithm. The 

proposed algorithm was tested under the same conditions as other 
algorithms with the same cut-off points. The machine specification used in 

the experiment is as follows: AMD Phenom (TM) 9950 Quad-core CPU 2.6 

GHz, 3.25GB RAM, Windows XP Professional version 2002 (Service Pack 
3) OS and Dev-C++ version 4.9.9.2 compiler. 
 

 Table 2 shows that the hybrids algorithms have different cut-off 

points depending on the length of the number. The cut-off point value 

increases continuously against the length of numbers within the range of 32 

to 128 bits. For numbers in the range of 1 Kbits up to 8 Kbits, the cut-off 
point stable at 16 bits.  
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TABLE 2: Execution time (msec) of multiplication algorithms 
 

Algorithm 
Length of numbers (bits) 

32 64 128 256 512 1024 2048 4096 8192 

CL 0.007 0.023 0.083 0.344 1.27 4.9 19.2 76.9 308.5 

KA 0.021 0.064 0.193 0.592 1.77 5.4 15.9 48.3 142.9 

KA-CL 0.008 0.024 0.078 0.267 0.82 2.5 7.6 23.3 71.4 

ProposedAlgorithm 

(x=7) 
0.005 0.010 0.020 0.094 0.28 1.4 4.1 13 33.3 

Cut-offPoint 16 32 64 32 32 16 16 16 16 

 

 The results show that the performance of KA-\=2mmultiplication 

algorithm is better than CL, KA and KA-CL. The speed of KA-\=2a is 

about1.4 times faster than CL and increases to 9.2 times faster for 8 Kbits 

numbers. Comparing the execution speed between KA-\=2mand KA, tells 

us that KA-\=2mis about 4.2 times faster for 32 bits number and increases 
to about 4.3 times faster for 8 Kbits numbers, with some fluctuation in 

between. Figure 1 also indicates that KA-ZOTx is relatively faster than KA-

CL. KA-ZOTx is about 1.6 times faster to 2.9 times faster for multiplying 
numbers in the range of 32 bits to 8Kbits. 

 

 
 

 

Figure 1: Comparison of KA-ZOTx multiplication algorithm against CL,KA and 

KA-CL multiplication algorithms 

 

5. CONCLUSION 

 In this paper, we proposed a new hybrid multiplication algorithm, 
combining the Karatsuba multiplication algorithmwith the ZOTx 

multiplication algorithm. The proposed Karatsuba-ZOTx (with x = 7) out-

performs all other tested algorithms. The result indicated that Karatsuba-

ZOTx algorithm is about 1.6 (for 32 bits numbers) to 2.9 times faster (for 
8192 bits numbers) against the best existing Karatsuba-Classical algorithm. 

0

5

10

15

32 64 128 256 512 1024 2048 4096 8192
Length of multiplier-multiplicant  (bits)

KA-ZOTx/CL KA-ZOTx/KA KA-ZOTx/KA-CL



Shahram Jahani & Azman Samsudin 

 

154 Malaysian Journal of Mathematical Sciences 
 

The finding from this paper indicates that the proposed algorithm is 
currently the most suitable multiplication algorithm for the use in existing 

public-key cryptosystems. 
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